# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # # Resonances of a beam clamped at one end # # - Eigenmodes # - 3D # - Comparison with beam theory # # This example is adapted from (legacy Fenics): #   https://comet-fenics.readthedocs.io/en/latest/demo/modal_analysis_dynamics/cantilever_modal.html # where extensive explanations are given. Here we show how `elastodynamicsx` can be used to reproduce it. # # It is also inspired from (Fenicsx): #   https://mikics.github.io/gsoc-jupyterbook/chapter3/demo_half_loaded_waveguide.html # + import numpy as np from dolfinx import mesh, fem, default_scalar_type from mpi4py import MPI from elastodynamicsx.pde import material, boundarycondition, PDE from elastodynamicsx.solvers import EigenmodesSolver from elastodynamicsx.utils import make_facet_tags # - # ### FE domain # + L_, B_, H_ = 20., 0.5, 1. # Lengths # Nb of elts. Nx = 20 Ny = int(B_ / L_ * Nx) + 1 Nz = int(H_ / L_ * Nx) + 1 extent = [[0., 0., 0.], [L_, B_, H_]] # create the mesh domain = mesh.create_box(MPI.COMM_WORLD, extent, [Nx, Ny, Nz]) # create the function space V = fem.functionspace(domain, ("Lagrange", 2, (domain.geometry.dim,))) # define some tags tag_left, tag_top, tag_right, tag_bottom, tag_back, tag_front = 1, 2, 3, 4, 5, 6 boundaries = [(tag_left , lambda x: np.isclose(x[0], 0.)), (tag_right , lambda x: np.isclose(x[0], L_)), (tag_bottom, lambda x: np.isclose(x[1], 0.)), (tag_top , lambda x: np.isclose(x[1], B_)), (tag_back , lambda x: np.isclose(x[2], 0.)), (tag_front , lambda x: np.isclose(x[2], H_))] facet_tags = make_facet_tags(domain, boundaries) # - # ### Boundary condition # Clamp the left face of the beam bc_clamp = boundarycondition((V, facet_tags, tag_left), 'Clamp') # ### Define the material law # isotropic elasticity # + # Parameters here... E, nu = 1e5, 0. rho = 1e-3 # ... end # Scaling scaleRHO = 1e6 # a scaling factor to avoid blowing the solver scaleFREQ = np.sqrt(scaleRHO) # the frequencies must be scaled accordingly rho *= scaleRHO # Convert Young & Poisson to Lamé's constants lambda_ = E * nu / (1 + nu) / (1 - 2 * nu) mu = E / 2 / (1 + nu) # Convert floats to fem.Constant rho = fem.Constant(domain, default_scalar_type(rho)) lambda_ = fem.Constant(domain, default_scalar_type(lambda_)) mu = fem.Constant(domain, default_scalar_type(mu)) material = material(V, 'isotropic', rho, lambda_, mu) # - # ### Assemble the PDE pde = PDE(V, materials=[material], bodyforces=[], bcs=[bc_clamp]) # ### Solve # ## Initialize the solver; prepare to solve for 6 eigenvalues M = pde.M() # mass matrix (PETSc) C = None # None to ensure no damping K = pde.K() # stiffness matrix (PETSc) eps = EigenmodesSolver(V.mesh.comm, M, C, K, nev=6) # ## Run the big calculation! eps.solve() # ## End of big calc. # + # ## Get the result # eps.printEigenvalues() eigenfreqs = eps.getEigenfrequencies() # eigenmodes = eps.getEigenmodes() eps.plot(V, wireframe=True, factor=50) # - # ### Compare with beam theory # $\omega_n = \alpha_n^2 \sqrt{\frac{E I}{\rho S L^4}}$, with $S$ the cross section, $I$ the bending inertia, and $\alpha_n$ the $n^\mathrm{th}$ solution of $\cos\alpha \cosh\alpha +1 =0$. # Exact solution computation from scipy.optimize import root from math import cos, cosh falpha = lambda x: cos(x) * cosh(x) + 1 alpha = lambda n: root(falpha, (2 * n + 1) * np.pi / 2)['x'][0] nev = eigenfreqs.size I_bend = H_ * B_**3 / 12 * (np.arange(nev) % 2 == 0) + B_ * H_**3 / 12 * (np.arange(nev) % 2 == 1) freq_beam = np.array([alpha(i // 2) for i in range(nev)])**2 \ * np.sqrt(E * I_bend / (rho.value * B_ * H_ * L_**4)) / 2 / np.pi print('Eigenfrequencies: comparison with beam theory\n') print('mode || FE (Hz)\t|| Beam theory (Hz)\t|| Difference (%)') for n in range(len(eigenfreqs)): fe = eigenfreqs[n] * scaleFREQ bt = freq_beam[n] * scaleFREQ print(f'{n+1} || {fe:.4f}\t|| {bt:.4f} \t|| {100*(fe-bt)/fe:.1f}')