# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # # P and SV elastic waves in an unbounded solid # # - Time-domain, explicit scheme, Spectral elements # - 2D # - Impedance absorbing boundary conditions # - Comparison with an analytical solution # + import numpy as np import matplotlib.pyplot as plt from dolfinx import mesh, fem, default_scalar_type import ufl from mpi4py import MPI from petsc4py import PETSc from elastodynamicsx.pde import material, BodyForce, boundarycondition, PDE, PDECONFIG from elastodynamicsx.solvers import TimeStepper from elastodynamicsx.plot import plotter from elastodynamicsx.utils import spectral_element, spectral_quadrature, make_facet_tags, ParallelEvaluator from analyticalsolutions import u_2D_PSV_xt, int_Fraunhofer_2D # - # ### Set up a Spectral Element Method # + degElement, nameElement = 4, "GLL" PDECONFIG.default_metadata = spectral_quadrature(nameElement, degElement) cell_type = mesh.CellType.quadrilateral specFE = spectral_element(nameElement, cell_type, degElement, (2,)) # - # ### FE domain # + length, height = 10, 10 Nx, Ny = 100 // degElement, 100 // degElement # Nb of elts. # create the mesh extent = [[0., 0.], [length, height]] domain = mesh.create_rectangle(MPI.COMM_WORLD, extent, [Nx, Ny], cell_type) # create the function space V = fem.functionspace(domain, specFE) # define some tags tag_left, tag_top, tag_right, tag_bottom = 1, 2, 3, 4 all_tags = (tag_left, tag_top, tag_right, tag_bottom) boundaries = [(tag_left , lambda x: np.isclose(x[0], 0 )), (tag_right , lambda x: np.isclose(x[0], length)), (tag_bottom, lambda x: np.isclose(x[1], 0 )), (tag_top , lambda x: np.isclose(x[1], height))] facet_tags = make_facet_tags(domain, boundaries) # - # ### Define the material law # isotropic elasticity # + # parameters here... rho = fem.Constant(domain, default_scalar_type(1)) mu = fem.Constant(domain, default_scalar_type(1)) lambda_ = fem.Constant(domain, default_scalar_type(2)) # ... end mat = material(V, 'isotropic', rho, lambda_, mu) # - # ### Boundary conditions # Plane-wave absorbing boundary conditions ('Dashpot') #  $\sigma(u).n = Z_N \partial_t u_N + Z_T \partial_t u_T$ where $Z_{N,T}=\rho c_{L,T}$ is the normal/tangential acoustic impedance of the medium # + Z_N, Z_T = mat.Z_N, mat.Z_T # P and S mechanical impedances bc_l = boundarycondition((V, facet_tags, tag_left ), 'Dashpot', Z_N, Z_T) bc_r = boundarycondition((V, facet_tags, tag_right ), 'Dashpot', Z_N, Z_T) bc_b = boundarycondition((V, facet_tags, tag_bottom), 'Dashpot', Z_N, Z_T) bc_t = boundarycondition((V, facet_tags, tag_top ), 'Dashpot', Z_N, Z_T) bcs = [bc_l, bc_r, bc_b, bc_t] # - # ### Source term (body force) # + # ## -> Space function X0_src = np.array([length / 2, height / 2, 0]) # center R0_src = 0.1 # radius # Gaussian function nrm = 1 / (2 * np.pi * R0_src**2) # normalize to int[src_x(x) dx]=1 def src_x(x): # source(x): Gaussian r = np.linalg.norm(x - X0_src[:, np.newaxis], axis=0) return nrm * np.exp(-1/2 * (r / R0_src)**2, dtype=default_scalar_type) # ## -> Time function f0 = 1 # central frequency of the source T0 = 1 / f0 # period d0 = 2 * T0 # duration of source def src_t(t): # source(t): Sine x Hann window window = np.sin(np.pi * t / d0)**2 * (t < d0) * (t > 0) # Hann window return np.sin(2 * np.pi * f0 * t) * window # ## -> Space-Time function F_0 = default_scalar_type([1, 0]) # amplitude of the source def F_body_function(t): # source(x) at a given time return lambda x: F_0[:, np.newaxis] * src_t(t) * src_x(x)[np.newaxis, :] # Body force 'F_body' F_body = fem.Function(V) # body force gaussianBF = BodyForce(V, F_body) # - # ### Assemble the PDE pde = PDE(V, materials=[mat], bodyforces=[gaussianBF], bcs=bcs) # ### Time scheme # + # Temporal parameters tstart = 0 # Start time tmax = 4 * d0 # Final time num_steps = 1200 dt = (tmax - tstart) / num_steps # time step size # Some control numbers... hx = length / Nx c_S = np.sqrt(mu.value / rho.value) # S-wave velocity lbda0 = c_S / f0 courant_number = TimeStepper.Courant_number(V.mesh, ufl.sqrt((lambda_ + 2 * mu) / rho), dt) PETSc.Sys.Print(f'Number of points per wavelength at central frequency: {lbda0 / hx:.2f}') PETSc.Sys.Print(f'Number of time steps per period at central frequency: {T0 / dt:.2f}') PETSc.Sys.Print(f'CFL condition: Courant number = {courant_number:.2f}') # Time integration # diagonal=True assumes the left hand side operator is indeed diagonal tStepper = TimeStepper.build(V, pde.M_fn, pde.C_fn, pde.K_fn, pde.b_fn, dt, bcs=bcs, scheme='leapfrog', diagonal=True) # Set the initial values tStepper.set_initial_condition(u0=[0, 0], v0=[0, 0], t0=tstart) # - # ### Define outputs # - Extract signals at few points # - Live-plot results (only in a terminal; not in a notebook) # + u_res = tStepper.timescheme.u # The solution # -> Extract signals at few points # Define points points_out = X0_src[:, np.newaxis] + np.array([[1, 1, 0], [2, 2, 0], [3, 3, 0]]).T # shape = (3, nbpts) # Declare a convenience ParallelEvaluator paraEval = ParallelEvaluator(domain, points_out) # Declare data (local) signals_local = np.zeros((paraEval.nb_points_local, V.num_sub_spaces, num_steps)) # <- output stored here # -> Define callbacks: will be called at the end of each iteration def cbck_storeAtPoints(i, out): if paraEval.nb_points_local > 0: signals_local[:, :, i+1] = u_res.eval(paraEval.points_local, paraEval.cells_local) # -> enable live plotting enable_plot = True if domain.comm.rank == 0 and enable_plot: clim = 0.1 * np.amax(F_0) * np.array([0, 1]) kwplot = {'clim': clim, 'warp_factor': 0.5 / np.amax(clim)} p = plotter(u_res, refresh_step=10, **kwplot) if paraEval.nb_points_local > 0: # Add points to live_plotter p.add_points(paraEval.points_local, render_points_as_spheres=True, point_size=12) if p.off_screen: p.window_size = [640, 480] p.open_movie('weq_2D-SH_FullSpace.mp4') else: p = None # - # ### Solve # - Define a 'callfirst' function to update the load # - Run the time loop # + # 'callfirsts': will be called at the beginning of each iteration def cfst_updateSources(t): F_body.interpolate(F_body_function(t)) # Run the big time loop! tStepper.solve(num_steps - 1, callfirsts=[cfst_updateSources], callbacks=[cbck_storeAtPoints], live_plotter=p) # End of big calc. # - # ### Post-processing # - Plot signals at few points # + # Gather the data to the root process all_signals = paraEval.gather(signals_local, root=0) if domain.comm.rank == 0: # Account for the size of the source in the analytical formula fn_kdomain_finite_size = int_Fraunhofer_2D['gaussian'](R0_src) # -> Exact solution, At few points x = points_out.T t = dt * np.arange(num_steps) signals_exact = u_2D_PSV_xt(x - X0_src[np.newaxis, :], src_t(t), F_0, rho.value, lambda_.value, mu.value, dt, fn_kdomain_finite_size) fig, ax = plt.subplots(1, 1) ax.set_title('Signals at few points') for i in range(len(all_signals)): ax.plot(t, all_signals[i, 0, :], c=f'C{i}', ls='-') # FEM ax.plot(t, signals_exact[i, 0, :], c=f'C{i}', ls='--') # exact ax.set_xlabel('Time') ax.legend(['FEM', 'analytical']) plt.show()