# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.15.2 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # # Self-interaction of a P wave in a 1D nonlinear elastic medium # # - Time-domain, explicit scheme, Spectral elements # - 1D # - Murnaghan hyperelasticity # - P-wave harmonics generation # + import numpy as np from dolfinx import mesh, fem, default_scalar_type import ufl from mpi4py import MPI from petsc4py import PETSc from elastodynamicsx.pde import material, boundarycondition, PDE, PDECONFIG from elastodynamicsx.solvers import TimeStepper from elastodynamicsx.plot import plotter from elastodynamicsx.utils import spectral_element, spectral_quadrature, make_facet_tags, ParallelEvaluator # - # ### Set up a Spectral Element Method # + degElement, nameElement = 4, "GLL" PDECONFIG.default_metadata = spectral_quadrature(nameElement, degElement) cell_type = mesh.CellType.interval specFE = spectral_element(nameElement, cell_type, degElement, (2,)) # - # ### FE domain # + length = 10 Nx = 100 // degElement # Nb of elts # create the mesh extent = [0, length] domain = mesh.create_interval(MPI.COMM_WORLD, Nx, extent) # create the function space V = fem.functionspace(domain, specFE) # define some tags tag_left, tag_right = 1, 2 all_tags = (tag_left, tag_right) boundaries = [(tag_left , lambda x: np.isclose(x[0], 0 )), (tag_right, lambda x: np.isclose(x[0], length))] facet_tags = make_facet_tags(domain, boundaries) # - # ### Define the material law # # Murnaghan's hyperelasticity. Parameters: # - $\rho$: density # - $\lambda$, $\mu$: Lamé's constants # - $l$, $m$, $n$: Murnaghan's constants # + # parameters here... rho = fem.Constant(domain, default_scalar_type(1)) mu = fem.Constant(domain, default_scalar_type(1)) lambda_ = fem.Constant(domain, default_scalar_type(2)) l_ = fem.Constant(domain, default_scalar_type(1)) m_ = fem.Constant(domain, default_scalar_type(1)) n_ = fem.Constant(domain, default_scalar_type(1)) # ... end mat = material(V, 'murnaghan', rho, lambda_, mu, l_, m_, n_) # - # ### Boundary conditions # # - Impedance boundary condition on either edge # - Traction load $T_N$ on the left edge, with compressive $_x$ and shear $_y$ components # + T_N = fem.Constant(domain, default_scalar_type([0, 0])) # normal traction (Neumann boundary condition) Z_N, Z_T = mat.Z_N, mat.Z_T # P and S mechanical impedances bc_l = boundarycondition((V, facet_tags, tag_left), 'Neumann', T_N) bc_rl = boundarycondition((V, facet_tags, (tag_left, tag_right)), 'Dashpot', Z_N, Z_T) bcs = [bc_l, bc_rl] # - # Define the temporal behavior of the source # + # -> Time function f0 = 1 # central frequency of the source T0 = 1 / f0 # period d0 = 5 * T0 # duration of source def src_t(t): # source(t): Sine x Hann window window = np.sin(np.pi * t / d0)**2 * (t < d0) * (t > 0) # Hann window return np.sin(2 * np.pi * f0 * t) * window # -> Space-Time function p_0 = default_scalar_type(7e-2) # max amplitude F_0 = p_0 * default_scalar_type([1, 1]) # source orientation def T_N_function(t): return src_t(t) * F_0 if domain.comm.rank == 0: import matplotlib.pyplot as plt t = np.linspace(0, 1.1 * d0) plt.plot(t, src_t(t) * F_0[0], label=r'$T_{N,x}$: comp.') plt.plot(t, src_t(t) * F_0[1], ls='--', label=r'$T_{N,y}$: shear') plt.legend() plt.xlabel('Time') plt.ylabel('Applied force') plt.show() # - # ### Assemble the PDE pde = PDE(V, materials=[mat], bodyforces=[], bcs=bcs) # ### Time scheme # # Leapfrog # + # Temporal parameters tstart = 0 # Start time tmax = 15 * T0 # Final time num_steps = 1500 dt = (tmax - tstart) / num_steps # time step size # Some control numbers... hx = length / Nx c_S = np.sqrt(mu.value / rho.value) # S-wave velocity lbda0 = c_S / f0 courant_number = TimeStepper.Courant_number(V.mesh, ufl.sqrt((lambda_ + 2 * mu) / rho), dt) PETSc.Sys.Print(f'Number of points per wavelength at central frequency: {lbda0 / hx:.2f}') PETSc.Sys.Print(f'Number of time steps per period at central frequency: {T0 / dt:.2f}') PETSc.Sys.Print(f'CFL condition: Courant number = {courant_number:.2f}') # Time integration # diagonal=True assumes the left hand side operator is indeed diagonal tStepper = TimeStepper.build(V, pde.M_fn, pde.C_fn, pde.K_fn, pde.b_fn, dt, bcs=bcs, scheme='leapfrog', diagonal=True) # Set the initial values tStepper.set_initial_condition(u0=[0, 0], v0=[0, 0], t0=tstart) # - # ### Define outputs # - Extract signals at few points # - Live-plot results (only in a terminal; not in a notebook) # + u_res = tStepper.timescheme.u # The solution # -> Extract signals at few points # Define points points_out = np.array([[3, 0, 0], [6, 0, 0], [9, 0, 0]]).T # shape = (3, nbpts) # Declare a convenience ParallelEvaluator paraEval = ParallelEvaluator(domain, points_out) # Declare data (local) signals_local = np.zeros((paraEval.nb_points_local, V.num_sub_spaces, num_steps)) # <- output stored here # -> Define callbacks: will be called at the end of each iteration def cbck_storeAtPoints(i, out): if paraEval.nb_points_local > 0: signals_local[:, :, i+1] = u_res.eval(paraEval.points_local, paraEval.cells_local) # enable live plotting enable_plot = True clim = 0.1 * np.amax(F_0) * np.array([0, 1]) kwplot = {'clim': clim, 'warp_factor': 0.5 / np.amax(clim)} if domain.comm.rank == 0 and enable_plot: p = plotter(u_res, refresh_step=10, window_size=[640, 480], **kwplot) if paraEval.nb_points_local > 0: # add points to live_plotter p.add_points(paraEval.points_local, render_points_as_spheres=True, point_size=12) else: p = None # - # ### Solve # - Define a 'callfirst' function to update the load # - Run the time loop # + # 'callfirsts': will be called at the beginning of each iteration def cfst_updateSources(t): T_N.value = T_N_function(t) # Run the big time loop! tStepper.solve(num_steps - 1, callfirsts=[cfst_updateSources], callbacks=[cbck_storeAtPoints], live_plotter=p) # End of big calc. # - # ### Post-processing # - Plot signals at few points # + # Gather the data to the root process all_signals = paraEval.gather(signals_local, root=0) if domain.comm.rank == 0: # -> Exact (linear) solution, At few points x = points_out.T t = dt * np.arange(num_steps) cL = np.sqrt((lambda_.value + 2 * mu.value) / rho.value) cS = np.sqrt(mu.value / rho.value) resp_L = np.cumsum(src_t(t[np.newaxis, :] - x[:, 0, np.newaxis] / cL) * F_0[0] / 2 / cL / rho.value, axis=1) * dt resp_S = np.cumsum(src_t(t[np.newaxis, :] - x[:, 0, np.newaxis] / cS) * F_0[1] / 2 / cS / rho.value, axis=1) * dt signals_linear = np.stack((resp_L, resp_S), axis=1) f = np.fft.rfftfreq(t.size) / dt fig, ax = plt.subplots(V.num_sub_spaces, 2, sharex='col', sharey='none') ax[0, 0].set_title('Signals at few points') ax[0, 1].set_title('Spectra at few points') for icomp, cax in enumerate(ax): for i in range(len(all_signals)): cax[0].text(0.02, 0.97, 'U' + ['x', 'y', 'z'][icomp], ha='left', va='top', transform=cax[0].transAxes) cax[0].plot(t, all_signals[i, icomp, :], c=f'C{i}', ls='-') # FEM cax[0].plot(t, signals_linear[i, icomp, :], c=f'C{i}', ls='--') # exact linear # cax[1].plot(f, np.abs(np.fft.rfft(all_signals[i, icomp, :])), c=f'C{i}', ls='-') # FEM cax[1].plot(f, np.abs(np.fft.rfft(signals_linear[i, icomp, :])), c=f'C{i}', ls='--') # exact linear specX = np.abs(np.fft.rfft(all_signals[i, 0, :])) specX_f = specX[np.argmin(np.abs(f - 1 / T0))] specX_2f = specX[np.argmin(np.abs(f - 2 / T0))] ax[0, 1].annotate('2nd harmonic', xy=(2 / T0, 1.2 * specX_2f), xytext=(2.1 / T0, 0.4 * specX_f), arrowprops=dict(facecolor='black', shrink=0.05)) ax[-1, 0].set_xlabel('Time') ax[-1, 1].set_xlabel('Frequency') ax[-1, 1].set_xlim(-0.1 / T0, 3.8 / T0) ax[-1, 1].set_xticks(np.arange(4) / T0, ['0', 'f', '2f', '3f']) plt.show() # # -----------------------------------------------------